Endothelial endocytic pathways: gates for vascular drug delivery.
نویسندگان
چکیده
Vascular endothelium plays strategic roles in many drug delivery paradigms, both as an important therapeutic target itself and as a barrier for reaching tissues beyond the vascular wall. Diverse means are being developed to improve vascular drug delivery including stealth liposomes and polymer carriers. Affinity carriers including antibodies or peptides that specifically bind to endothelial surface determinants, either constitutive or pathological, enhance targeting of drugs to endothelial cells (EC) in diverse vascular areas. In many cases, binding to endothelial surface determinants facilitates internalization of the drug/carrier complex. There are several main endocytic pathways in EC, including clathrin- and caveoli-mediated endocytosis, phagocytosis and macropinocytosis (these two are less characteristic of generic EC) and the recently described Cell Adhesion Molecule (CAM)-mediated endocytosis. The latter may be of interest for intracellular drug delivery to EC involved in inflammation or thrombosis. The metabolism and effects of internalized drugs largely depend on the routes of intracellular trafficking, which may lead to degrading lysosomal compartments or other organelles, recycling to the plasma membrane or transcytosis to the basal surface of endothelium. The latter route, characteristic of caveoli-mediated endocytosis, may serve for trans-endothelial drug delivery. Paracellular trafficking, which can be enhanced under pathological conditions or by auxiliary agents, represents an alternative for transcytosis. Endothelial surface determinants involved in endocytosis, mechanisms of the latter and trafficking pathways, as well as specific characteristics of EC in different vascular areas, are discussed in detail in the context of modern paradigms of vascular drug delivery.
منابع مشابه
Distinct Subcellular Trafficking Resulting from Monomeric vs Multimeric Targeting to Endothelial ICAM-1: Implications for Drug Delivery
Ligand-targeted, receptor-mediated endocytosis is commonly exploited for intracellular drug delivery. However, cells-surface receptors may follow distinct endocytic fates when bound by monomeric vs multimeric ligands. Our purpose was to study this paradigm using ICAM-1, an endothelial receptor involved in inflammation, to better understand its regulation and potential for drug delivery. Our pro...
متن کاملA novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1.
Antibody conjugates directed against intercellular adhesion molecule (ICAM-1) or platelet-endothelial cell adhesion molecule (PECAM-1) have formed the basis for drug delivery vehicles that are specifically recognized and internalized by endothelial cells. There is increasing evidence that ICAM-1 and PECAM-1 may also play a role in cell scavenger functions and pathogen entry. To define the mecha...
متن کاملEffects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells
Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...
متن کاملVascular endothelial growth factor and semaphorin induce neuropilin-1 endocytosis via separate pathways.
The neuropilin (Nrp)1 receptor is essential for both nervous and vascular system development. Nrp1 is unusually versatile, because it transmits both chemoattractive and repulsive signals in response to vascular endothelial growth factor (VEGF)-A and class 3 semaphorins, respectively. Both Nrp1 and VEGF receptor 2 undergo ligand-dependent endocytosis. We sought to establish the endocytic pathway...
متن کاملSlow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress.
Nanotechnologies promise new means for drug delivery. ICAM-1 is a good target for vascular immunotargeting of nanoparticles to the perturbed endothelium, although endothelial cells do not internalize monomeric anti-ICAM-1 antibodies. However, coupling ICAM-1 antibodies to nanoparticles creates multivalent ligands that enter cells via an amiloride-sensitive endocytic pathway that does not requir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current vascular pharmacology
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2004